Содержание:
Клетки костной ткани
Кость не инертная ткань, а динамически обновляющаяся в течение всей жизни соединительная ткань. Старая матрица кости постоянно заменяется новообразованной матрицей. Этот непрерывный процесс называется ремоделированием кости. Ремоделирование имеет большое значение для поддержания объема костной ткани и её прочности. Объем костной ткани поддерживается за счет баланса резорбции костной ткани и формированием костной ткани. Костные клетки состоят из клеток линии остеобластов и линии остеокластов. Их дифференцировка и функции регулируются остеотропными гормонами и цитокинами. Недавние исследования показали, что клетки линии остеобластов участвуют не только в формировании костной ткани, но и в резорбции кости, поддерживая дифференциацию и активацию остеокластов. В этой статье отражены данные морфологических характеристик клеток линии остеобластов, их функции и дифференцировка. Остеобласты
Остеобласты — это кубовидные клетки, расположенные вдоль поверхности кости, составляют 4-6% от общего числа резидентных костных клеток, основная функция — формирование кости. Морфологические характеристики остеобластов отражают их способность к синтезу белка: обильная шероховатая эндоплазматической сеть, видимый аппарат Гольджи, различные секреторные везикулы. Как поляризованные клетки, остеобласты секретируют остеоид матрицы кости.
Остеобласты образуются из мезенхимальных стволовых клеток (МСК). Коммитирование МСК в клетки предшественники остеогенеза требует экспрессии специфических генов, синтез костных морфогенетических белков и членов специфического сигнального пути.
Синтез костной матрицы остеобластами включает два основных этапа: осаждение органической матрицы и ее последующая минерализация. На первом этапе остеобласты секретируют коллаген, в основном типа I коллаген, неколлагеновые белки (остеонектин, сиалопротеин II и остеопонтин) и протеогликаны, включая декорин и бигликан, которые образуют органическую матрицу. После этого в два этапа происходит минерализация костной матрицы: везикулярная и фибриллярная фазы. В везикулярную фазу из апикальной части остеобластов освобождаются матричные пузырьки (везикулы, диаметр 30 — 200 нм), содержащие ионы кальция, связанные с протеогликанами и другими органическими компонентами, имеющими отрицательный заряд. Когда остеобласты секретируют ферменты, которые разрушают протеогликаны, ионы кальция высвобождаются из протеогликанов в кальциевые каналы матрицы мембраны везикул. Эти каналы образованы белками, называемыми аннексины.
С другой стороны, фосфатсодержащие соединения пузырьков гидролизуются щелочной фосфатазой, секретируемой остеобластами, высвобождая ионы фосфата внутри матричных везикул. Ионы фосфата и кальция внутри везикул связываются, образуя кристаллы гидроксиапатита. Фибриллярная фаза возникает тогда, когда перенасыщение ионами кальция и фосфата в матричных пузырьках приводит к разрыву этих структур, и кристаллы гидроксиапатита распространяются в окружающую матрицу.
Зрелые остеобласты могут подвергаться
- апоптозу, стать
- остеоцитами или
- костными обкладочными клетками.
Обкладочные клетки кости в линии остеобластов
Костные обкладочные клетки в состоянии покоя представляют собой плоские остеобласты, которые покрывают поверхность кости в местах, где отсутствуют процессы синтеза и резорбции костной ткани. Эти клетки обладают тонким и плоским ядерным профилем; в цитоплазме содержится несколько органелл — эндоплазматический ретикулум и комплекс Гольджи.
Секреторная активность костных обкладочных клеток зависит от физиологического состояния костной ткани. Эти клетки могут приобретать секреторную активность, увеличивая размер, и принимать внешний вид шестигранника. Функции костных подкладочных клеток не полностью изучены, но было показано, что эти клетки при резорбции кости предотвращают непосредственное взаимодействие остеокластов с костным матриксом, участвуют дифференцировке остеокластов, освобождая остеопротегерин и активатор рецепторов ядерного фактора (RANKL). Кроме того, обкладочные клетки кости вместе с другими костными клетками являются важным компонентом анатомической структуры цикла ремоделирования костной ткани.
Остеоциты в линии остеобластов
Остеоциты составляют 90-95% от общего количества костных клеток, являются наиболее распространенными и долгоживущими клетками, с продолжительностью жизни до 25 лет. В течение многих десятилетий из-за трудностей в выделении остеоцитов из костной матрицы их ошибочно относили к пассивным клеткам. Развитие новых технологий позволило установить, что эти клетки играют многочисленные важные функции в кости. Остеоциты расположены в лакунах, окруженных минерализованной костной матрицей, имеют морфологию дендритных клеток. Морфология остеоцитов зависит от типа кости. Например, остеоциты губчатой кости более округлые, чем остеоциты кортикальной кости удлиненной морфологии. Остеоциты образуются при дифференцировке остеобластов. В этом процессе выделяют четыре узнаваемых этапа: остеоид-остеоцитарный, преостеоцитарный, молодой остеоцитарный и зрелый остеоцитарный.
В конце цикла формирования кости субпопуляции остеобластов становятся остеоцитами, включенными в матрицу кости.
Этот процесс сопровождается заметными морфологическими и ультраструктурными изменениями, включая уменьшение круглого размера остеобластов. Количество органелл, таких как шероховатая эндоплазматическая сеть и комплекс Гольджи, уменьшается, а отношение ядро/цитоплазма возрастает, снижается синтез белка и секреция. Зрелые остеоциты полностью погружены внутри минерализованной костной матрицы. Исчезают маркеры остеобластов, появляются маркеры остеоцитов, включая дентин матричного белка 1 и склеростин. В то время как тело остеоцита находится внутри лакуны, его цитоплазматические дендриты (до 50 на каждую клетку) пересекают крошечные туннели, которые берут начало из пространства лакун, под названием канальцы, образуя остеоцит — лакуноканаликулярную систему.
Остеоциты системы обмениваются информацией, как с помощью щелевых контактов, так и с помощью малых сигнальных молекул, таких как простагландины и оксид азота. Кроме того, остеоцит — лакуноканаликулярная система находится в непосредственной близости от сосудов, в результате чего кислород и питательные вещества достигают остеоцитов. Межклеточная связь также достигается за счет межклеточной жидкости, которая течет между отростками остеоцитов и канальцев. Остеоцит-лакуноканаликулярная система остеоцитов действуют как механосенсоры, обладает способностью обнаруживать механические нагрузки и тем самым способствовать адаптации кости к ежедневным механическим силам.
Этим образом, остеоциты, вероятно, действуют как дирежеры ремоделирования кости, посредством регулирования активности остеобластов и остеокластов. Кроме того, апоптоз остеоцитов рассматривается как хемотаксический сигнал к резорбции костной ткани остеокластами. Показано, что во время резорбции кости апоптотические остеоциты поглощаются остеокластами. Механочувствительная функция остеоцитов достигается за счет стратегического расположения этих клеток в костной матрице.
В остеоцитах механические стимулы переводятся в биохимические сигналы. Это явление называется пьезоэлектрический эффект. Механизмы и компоненты, с помощью которых остеоциты преобразуют механические стимулы в биохимические сигналы, не очень хорошо известны. При механической стимуляции остеоциты производят несколько вторичных мессенджеров, таких как АТФ, оксид азота (NO), Са2+, и простагландины (PGE2 и PGI2), которые влияют на физиологию кости. Вне зависимости от вовлеченного механизма, важно отметить, что механочувствительная функция остеоцитов возможна благодаря сложной канальцевой сети, которая обеспечивает связь между костными клетками.